Prinsip Kerja Pressure Regulating Valve

Pressure Regulating Valve atau biasa disingkat menjadi PRV merupakan sebuah komponen sistem hidrolik maupun pneumatik yang berfungsi untuk mengatur besar tekanan fluida dari sistem sumber tekanan tinggi (seperti pompa, kompresor, atau tangki reservoir) ke sistem pengguna bertekanan rendah. PRV selalu bertugas menjaga tekanan fluida yang nilainya lebih rendah daripada tekanan supply-nya, oleh karena itu tekanan fluida sebelum melewati PRV akan selalu lebih besar daripada tekanan sesudah melewati PRV. Dapat dikatakan PRV berfungsi menurunkan tekanan fluida sehingga sesuai dengan spesifikasi kebutuhan sistem, atau juga untuk kebutuhan keamanan dan keselamatan penggunaan.

 photo A0141FFD-28D2-48C9-A451-1EA7A22F319F.png

Secara garis besar ada dua tipe PRV jika dilihat dari sistem operasionalnya, yakni satu tahap dan dua tahap pressure regulator. Gambar di atas menggambarkan sebuah sistem PRV dengan hanya satu tahap pressure regulator. Nampak pada gambar tersebut beberapa komponen utama PRV seperti inlet dan outlet pressure gauge, membran diafragma, pegas, poppet valve, serta tuas untuk mengatur set point tekanan kerja PRV. Pressure gauge berfungsi sebagai penunjukan nilai tekanan fluida baik pada sisi sumber tekanan maupun sisi keluaran PRV. Diafragma berfungsi untuk menciptakan sebuah ruang kerja fleksibel di dalam PRV yang mampu berubah-ubah volume. Dua pegas pada sistem PRV berfungsi untuk menghasilkan kesetimbangan tekanan, sedangkan Poppet valve berfungsi untuk membuka serta menutup aliran fluida.

Sesuai dengan sedikit gambaran di atas, prinsip kerja Pressure Regulating Valve umumnya hanya menggunakan prinsip-prinsip sistem mekanis dan tidak ada sistem elektris sama sekali. Sekarang mari kita berandai-andai jika tekanan fluida di area outlet turun (area berwarna biru lebih muda), maka yang terjadi adalah ruangan di dalam diafragma akan mengecil karena pegas 1 akan menekan diafragma. Selain itu pegas 1 juga akan menekan poppet valve sehingga akan membuka aliran fluida untuk masuk ke area diafragma. Fluida dapat masuk ke area ini karena memiliki tekanan yang lebih besar dibandingkan dengan tekanan di dalam area diafragma. Pada suatu kondisi tertentu tekanan fluida di dalam area outlet ditambah dengan tekanan dari pegas 2, akan cukup kuat untuk melawan dorongan dari pegas 1 yang memiliki ukuran lebih besar daripada pegas 2. Sehingga kondisi demikian akan menciptakan kesetimbangan yang menyebabkan poppet valve kembali tertutup. Proses tersebut berlanjut demikian seterusnya setiap tekanan di downstream PRV lebih rendah daripada nilai set point yang seharusnya.

 photo 59023F50-B95B-41C5-AB97-6452A6CDF8A3.png

Perbedaan paling mendasar dari PRV dengan dua tahap pressure regulator dibandingkan dengan sistem sebelumnya adalah pada sistem dua tahap ini digunakan pegas serta membran diafragma yang lebih banyak untuk menciptakan sebuah ruang kesetimbangan di dalam PRV (chamber). Pada saat tekanan fluida pada ruangan outlet turun, maka pegas 1 akan menekan diafragma dan poppet valve 1 sehingga fluida bertekanan lebih tinggi di chamber akan masuk ke ruang outlet. Saat tekanan fluida chamber turun karena harus masuk ke ruang outlet, maka proses yang sama terjadi pada pegas 4 yang akan mendorong poppet valve 2 sehingga fluida bertekanan lebih tinggi masuk ke ruang chamber. Saat tekanan fluida outlet sudah sesuai dengan tekanan set point-nya, maka sistem pegas akan membentuk kesetimbangan sehingga kedua poppet valve akan tertutup sempurna.

Dari gambaran di atas nampak dua tipe PRV tersebut memiliki fungsi sama namun untuk penggunaan kondisi yang sedikit berbeda. PRV dengan hanya satu tahap pengaturan tekanan lebih cocok digunakan pada fluida dengan tekanan kerja rendah. Sedangkan PRV dengan dua tahap pressure regulator lebih cocok digunakan untuk fluida bertekanan kerja sangat tinggi.

Credit: Wikipedia: Pressure Regulator

Komponen-komponen Sistem Pneumatik

Sistem pneumatik bertujuan untuk menggerakkan berbagai peralatan dengan menggunakan gas kompresibel sebagai media kerjanya. Udara menjadi satu media kerja sistem pneumatik yang paling banyak digunakan karena jumlahnya yang tidak terbatas dan harganya yang murah. Udara yang dikompresi oleh kompresor, didistribusikan menuju berbagai macam aktuator melewati sistem kontrol tertentu. Kadang ada juga udara terkompresi tersebut dicampur dengan atomized oil untuk kebutuhan pelumasan pada sistem aktuator. Namun yang lebih umum adalah udara terkompresi yang kering, atau telah mengalami proses pengeringan melalui air dryer.

Sistem Pneumatik

Salah Satu Contoh Aplikasi Sistem Pneumatik

Prinsip kerja dan komponen-komponen yang digunakan pada sistem pneumatik, hampir sama dengan sistem hidrolik. Untuk perbedaan antara keduanya, bisa Anda baca pada artikel ini.

Berikut adalah komponen-komponen sistem pneumatik secara umum :

1. Kompresor
Kompresor adalah suatu alat mekanikal yang bertujuan untuk menaikkan tekanan suatu gas dengan cara menurunkan volumenya. Komponen inilah yabg mensupply udara bertekanan untuk sistem pneumatik, serta menjaga tekanan sistem agar tetap berada pada tekanan kerjanya.

Kompresor

Kompresor

2. Regulator & Gauge
Kedua alat tersebut menjadi komponen wajib di setiap sistem pneumatik. Regulator adalah komponen yang berfungsi untuk mengatur supply udara terkompresi masuk ke sisptem pneumatik. Sedangkan gauge berfungsi sebagai penunjuk besar tekanan udara di dalam sistem. Keduanya dapat berupa sistem mekanis maupun elektrik.

Regulator & Gauge

Regulator dan Gauge pada Sistem Pneumatik

3. Check Valve
Check Valve adalah valve atau katup yang berfungsi untuk mencegah adanya aliran balik dari fluida kerja, dalam hal ini udara terkompresi. Terutama adalah apabila pada sebuah sistem pneumatik tersebut dipergunakan tanki akumulator udara, sehingga Check Valve tersebut mencegah adanya udara dari akumulator untuk kembali menuju kompresor namun tetap mengalirkan udara bertekanan dari kompresor untuk masuk ke dalam akumulator.

4. Tanki Akumulator
Tanki akumulator atau juga disebut buffer tank berfungsi sebagai cadangan (storage) tekanan udara terkompresi yang digunakan untuk penggerak aktuator. Selain itu tanki ini juga berfungsi untuk mencegah ketidakstabilan supply udara ke aktuator, lebih menstabilkan kerja kompresor agar tidak terlalu sering mematikan dan menyalakannya lagi, serta lebih memudahkan desain sistem dalam menempatkan kompresor jika diharusakan penempatan aktuator pneumatik lebih jauh dengan kompresor.

Tanki Akumulator

Tanki Akumulator Sistem Pneumatik

5. Saluran Pipa
Pipa-pipa digunakan untuk mendistribusikan udara terkompresi dari kompresor atau tanki akumulator ke berbagai sistem aktuator. Diameter pipa yang digunakan pun bermacam-macam tergantung dari desain dan tujuan penggunaan sistem pneumatik tersebut. Pada sebuah sistem pneumatik besar (menggunakan lebih dari dua aktuator), untuk area sistem supply (area kompresor dan tanki) digunakan pipa berdiameter lebih besar daripada yang digunakan pada area aktuator. Namun jika sistem pneumatik yang ada kecil, misal hanya untuk menggerakkan satu saja aktuator, maka diameter pipa yang digunakan pun akan seragam di semua bagian.

6. Directional Valve
Directional valve atau katub pengatur arah yang instalasinya berada tepat sebelum aktuator, adalah berfungsi untuk mengatur kerja aktuator dengan cara mengatur arah udara terkompresi yang masuk atau keluar dari aktuator. Satu valve ini didesain untuk dapat mengatur arah aliran fluida kerja di dua atau bahkan lebih arah aliran. Ia bekerja secara mekanis atau elektrik tergantung dari desain yang ada.

Directional Valve

Pneumatic Directional Valve

7. I/P Controller
Pada aktuator pneumatik yang kerjanya dapat bermodulasi diperlukan satu alat kontrol supply udara bertekanan yang khusus bernama I/P Controller. I/P Controller ini mengubah perintah kontrol dari sistem kontrol yang berupa sinyal arus, menjadi besar tekanan udara yang harus disupply ke aktuator.

<em>I/P Controller</em>

Pneumatic I/P Controller

8. Aktuator
Pneumatik aktuator adalah alat yang melakukan kerja pada sistem pneumatik. Ada berbagai macam jenis pneumatik aktuator sesuai dengan penggunaannya. Antara lain adalah silinder pneumatik, diafragma aktuator, serta pneumatik motor.

20110624-103740.jpg

Diafragma Aktuator

Perbedaan Sistem Pneumatik dengan Sistem Hidrolik

Sistem pneumatik adalah sebuah teknologi yang memanfaatkan udara terkompresi untuk menghasilkan efek gerakan mekanis. Karena menggunakan udara terkompresi, maka sistem pneumatik tidak dapat dipisahkan dengan kompresor, sebuah alat yang berfungsi untuk menghasilkan udara bertekanan tertentu.

Sistem Pneumatik Sederhana

Sistem kerja pneumatik mirip dengan sistem hidrolik. Ada beberapa bagian komponen yang sedikit berbeda, namun seperti aktuator (motor dan silinder), filter, dan solenoid valve memiliki prinsip yang sama dengan sistem hidrolik. Perbedaan mendasar dari kedua sistem tersebut adalah fluida kerja yang digunakan, sistem hidrolik menggunakan fluida inkompresibel sedangkan pada sistem pneumatik menggunakan fluida kompresibel. Tekanan kerjanya juga pada range yang berbeda, jika sistem hidrolik bekerja pada tekanan 6,9-34 MPa, maka sistem pneumatik bekerja pada tekanan rendah 550-690 KPa.

Berikut mari kita bandingkan kelebihan sistem pneumatik daripada sistem hidrolik:
1. Sistem Pneumatik

  • Sistem pneumatik memiliki desain sistem dan kontrol yang sederhana. Komponen umumnya sangat mudah penginstallannya dan sistem kontrolnya sederhana seperti halnya kontrol ON dan OFF.
  • Memiliki reliabilitas tinggi karena sistem hidrolik berumur panjang dan budget perawatan yang rendah. Selain itu karena sifat gas yang kompresibel, maka ia tidak mudah rusak akibat beban kejut. Gas akan menyerap gaya kejut tersebut, berbeda dengan fluida hidrolik yang secara langsung akan mentransfer gaya kejut tersebut.
  • Gas terkompresi dapat disimpan untuk jangka waktu tertentu, sehingga dapat menggunakan mesin pneumatik untuk jangka waktu tertentu sekalipun supply listrik terputus.
  • Lebih aman karena tidak mudah terbakar seperti sistem hidrolik.

2. Sistem Hidrolik

  • Fluida liquid pada sistem hidrolik tidak menyerap gaya apapun yang dikenakan padanya.
  • Sifatnya yang inkompresibel menyebabkan penggunaan pada beban kerja yang lebih besar dan bekerja pada gaya yang lebih besar pula.
  • Fluida hidrolik yang inkompresibel juga meminimalisir gaya spring. Saat sistem hidrolik berhenti, tidak diperlukan proses pelepasan tekanan fluida karena saat sistem berhenti tekanan fluida pun juga sekaligus hilang, kecuali adanya penggunaan akumulator pada sistem.

Free e-book sistem pneumatik:
1. Pneumatic Systems