How to Calculate Boiler Efficiency

Boiler efficiency is a quantity that indicates the relationship between input energy entering the boiler with output energy produced by the boiler. However, the efficiency of the boiler can be defined in three ways:

  1. Combustion Efficiency
  2. Thermal Efficiency
  3. Fuel-Efficiency Steam (Fuel-to-Steam)

Combustion boiler efficiency generally describes the ability of a burner to burn the entire fuel into the boiler combustion chamber (furnace). The efficiency of this type is calculated from the amount of fuel that does not burn along with the amount of air combustion air (air excess). Burning boiler can be said to be efficient if there is no remaining fuel in the end outlet of boiler combustion chamber, so does the number of residual air.
To obtain high combustion efficiency, burner and boiler combustion chamber must be designed as optimal as possible. On the other hand differences in the use of fuels also affect the efficiency of combustion. It is known that liquid fuel and gas (LNG and HSD) produce higher combustion efficiency than solid fuels such as coal.

boiler efficiency

Calculating the combustion efficiency of the boiler is not difficult, we just need to reduce the total amount of heat energy released by thermal energy burning that passes out through the stack (chimney) divided by the total heat energy.

      \eta_{combustion}=\dfrac {Q_{in}-Q_{losses}}{Q_{in}}\times100\%

Where:

      \eta_{combustion} : boiler combustion efficiency (%)

      Q_{in} : The total heat of combustion energy (calories; Joule)

      Q_{losses} : Heat energy passing out through the chimney (calories; Joule)

The only difficult thing in calculating the combustion efficiency is how to pursuit the optimal number. Combustion efficiency is characterized by the overall fuel burning in the combustion chamber. While the control parameters are used to ensure the overall fuel burning, is the amount of air combustion (air excess) coming out through the stack. The more the amount of air excess coming out through the chimney, then the more likely the amount of unburned fuel can pass through the chimney. But you should remember that the more the amount of excess water passing through the chimney, the amount of heat energy escaping the rest of airborne is also growing. Therefore there is an optimum number of excess amounts of air, so that the boiler combustion efficiency can obtain the most optimal number.

 photo IMG_2264.png

Appears in the graph illustration above that the higher the amount of air (oxygen) passing through the stack, the smaller amount of fuel including carbon monoxide burned imperfectly. But as we have discussed above, the higher the amount of air excess, so the combustion efficiency chart is going to go back down, since the heat energy was coming away with the rest of the air. Then certainly there is an optimum value of the air excess to obtain the best combustion efficiency. As an illustration, the optimum value of air excess to the combustion of natural gas is 5 to 10%, liquid fuel at the rate of 5 to 20%, and 15 to 60% for coal combustion.

Boiler thermal efficiency shows how the performance in terms of its function as a heat exchanger. The efficiency calculation will show how effective the transfer of heat energy from the combustion process of fuel into the air. However, the efficiency calculation is not very accurate, because it does not account for the loss of heat radiation and convection that are not absorbed by water. In addition, the calculation of the thermal efficiency of the boiler cannot be used for economic analysis, because these calculation doesn’t take notice carefully the amount of fuel consumed. On this basis we will not discuss more about the calculation of the thermal efficiency of the boiler.

Cara Menghitung Efisiensi Boiler

Efisiensi boiler adalah sebuah besaran yang menunjukkan hubungan antara supply energi masuk ke dalam boiler dengan energi keluaran yang dihasilkan oleh boiler. Namun demikian, efisiensi pada boiler dapat didefinisikan ke dalam tiga cara yaitu:

  1. Efisiensi Pembakaran
  2. Efisiensi Termal
  3. Efisiensi Bahan Bakar-Uap Air (Fuel-to-Steam)

Efisiensi Pembakaran Boiler secara umum menjelaskan kemampuan sebuah burner untuk membakar keseluruhan bahan bakar yang masuk ke dalam ruang bakar (furnace) boiler. Efisiensi tipe ini dihitung dari jumlah bahan bakar yang tidak terbakar bersamaan dengan jumlah udara sisa pembakaran (excess air). Pembakaran boiler dapat dikatakan efisien apabila tidak ada bahan bakar yang tersisa di ujung keluaran ruang bakar boiler, begitu pula dengan jumlah udara sisa.
boiler efficiency

Untuk mendapatkan efisiensi pembakaran yang tinggi, burner dan ruang bakar boiler harus didesain seoptimum mungkin. Di sisi lain perbedaan penggunaan jenis bahan bakar juga mempengaruhi efisiensi pembakaran. Diketahui bahwa bahan bakar cair dan gas (seperti LNG dan HSD) menghasilkan efisiensi pembakaran yang lebih tinggi jika dibandingkan bahan bakar padat seperti batubara.

Menghitung efisiensi pembakaran boiler tidaklah sulit, kita hanya perlu mengurangi jumlah total energi panas yang dilepas oleh pembakaran dengan energi panas yang lolos melewati stack (cerobong asap), dibagi dengan total energi panas.
      \eta_{combustion}=\dfrac {Q_{in}-Q_{losses}}{Q_{in}}\times100\%
dimana,
      \eta_{combustion} : Efisiensi pembakaran boiler (%)
      Q_{in} : Energi panas total hasil pembakaran (kalori; Joule)
      Q_{losses} : Energi panas lolos melewati cerobong asap (kalori; Joule)

Satu-satunya yang sulit dari efisiensi pembakaran adalah bagaimana mengejar angka yang paling optimal. Efisiensi pembakaran ditandai dengan terbakarnya keseluruhan bahan bakar di ruang bakar. Sedangkan parameter kontrol yang digunakan untuk memastikan keseluruhan bahan bakar terbakar, adalah jumlah udara sisa pembakaran (excess air) yang keluar melalui stack. Semakin banyak jumlah excess air yang keluar melewati cerobong asap, maka semakin kecil pula kemungkinan jumlah bahan bakar yang belum terbakar bisa melewati cerobong asap. Namun juga, semakin banyak jumlah excess air yang lolos melewati cerobong asap, jumlah energi panas yang lolos terbawa oleh udara sisa tersebut juga semakin banyak. Maka dari itu ada angka optimum dari besaran excess air, sehingga didapatkan efisiensi pembakaran boiler yang paling optimal.

 photo IMG_2264.png

 

Nampak pada ilustrasi grafik di atas bahwa semakin tinggi jumlah udara (oksigen) yang lolos melewati stack, maka akan semakin kecil jumlah bahan bakar termasuk karbon monoksida yang belum terbakar sempurna. Namun juga seperti yang telah kita bahas di atas, semakin tinggi jumlah excess air maka grafik efisiensi pembakaran kembali turun, tidak lain hal ini dikarenakan energi panas yang ikut lolos dengan udara sisa tersebut. Maka dapat dipastikan ada nilai paling optimum dari excess air sehingga didapatkan efisiensi pembakaran paling baik. Sebagai gambaran saja, nilai excess air optimum untuk pembakaran gas alam adalah 5 hingga 10%, bahan bakar cair di angka 5 hingga 20%, dan 15 hingga 60% untuk pembakaran batubara.

Efisiensi Termal Boiler menunjukkan bagaimana performa boiler dalam hal fungsinya sebagai heat exchanger. Perhitungan efisiensi ini akan menunjukkan seefektif apa perpindahan energi panas dari proses pembakaran bahan bakar ke air. Namun perhitungan efisiensi ini tidak terlalu akurat, karena ia tidak memperhitungkan kerugian panas radiasi maupun konveksi yang tidak terserap oleh air. Selain itu, perhitungan efisiensi termal boiler tidak bisa digunakan untuk analisa ekonomis, sebab perhitungan ini tidak memperhatikan secara teliti jumlah bahan bakar yang dikonsumsi. Atas dasar inilah kita tidak akan membahas lebih dalam mengenai perhitungan efisiensi termal boiler.

Pengertian Heating Value Bahan Bakar

Hampir semua bahan bakar tersusun atas molekul-molekul hidrokarbon dengan konfigurasi yang berbeda-beda. Kayu misalnya, merupakan campuran berbagai macam molekul hidrokarbon organik seperti selulosa ((C6H10O5)x), hemi-selulosa (xylose, mannose, galactose, rhamnose, dan arabinose), serta lignin (C9H10O2, C10H12O3, C11H14O4). Hingga bahan bakar tambang semacam batu bara misalnya, yang kita ketahui terbentuk dari batang kayu jaman prasejarah, tersusun atas molekul hidrokarbon turunan dari molekul-molekul selulosa tumbuhan, yang akibat dari berbagai proses alami pelebaran rantai karbon hingga terbentuk molekul lignite (C70H5O25), subbituminous (C75H5O20), bituminous (C80H5O15) atau anthracite (C94H3O3). Selain bahan bakar berbasis hidrokarbon, bahan bakar non-hidrokarbon yang sangat lazim kita gunakan adalah hidrogen dengan rumus kimia H2.

Hands-with-Coal

Ikatan antar atom hidrokarbon ataupun non-hidrokarbon dari bahan-bahan bakar tersebut menyimpan energi. Energi dalam ikatan antar atom inilah yang biasa kita sebut sebagai energi kimia. Jika ikatan antar atom tersebut terlepas atau putus, energi yang tersimpan di dalamnya akan terlepas juga dalam bentuk panas. Jumlah energi panas yang terlepas untuk tiap satu satuan massa bahan bakar inilah yang biasa kita kenal sebagai nilai kalor, atau biasa dikenal dalam dunia engineer sebagai heating value. Selain melepas energi panas, terputusnya ikatan antar atom tersebut diikuti pula dengan reaksi oksidasi, yang ditandai dengan terikatnya atom oksigen dengan masing-masing atom karbon dan hidrogen membentuk karbon dioksida (CO2) maupun air (H2O).

 photo bomb-calorimeter.jpg
Bomb Calorimeter

Pengukuran Heating Value

Nilai heating value diukur menggunakan sebuah alat bernama bomb calorimeter. Alat ini tersusun atas sebuah ruang pembakaran dengan volume konstan sebagai tempat spesimen diukur nilai kalorinya. Ruang ini diselimuti dengan air sebagai media ukur saat terjadi perubahan temperatur akibat proses pembakaran terjadi. Spesimen diletakkan di dalam ruang bakar dan disulut menjadi api hingga terjadi ekspansi udara serta kenaikan temperatur ruang. Kenaikan temperatur tersebut akan memanaskan air yang menyelimuti ruang, sehingga didapatkan temperatur sebelum dan sesudah pembakaran bahan bakar. Dari nilai temperatur air inilah akan dihitung nilai kalor bahan bakar tersebut. Untuk lebih jelasnya mari kita simak video animasi berikut.

 

Perbedaan Higher Heating Value dengan Lower Heating Value

Dikenal ada dua jenis heating value yang digunakan secara luas di dunia, yakni higher heating value (HHV) serta lower heating value (LHV). Keduanya memiliki acuan dan metode perhitungan yang sedikit berbeda. Satu hal yang menjadi acuan di sini adalah adanya kandungan air yang dapat dipastikan akan selalu hadir pada setiap reaksi pembakaran hidrokarbon.

Seperti yang sudah pasti kita pahami dan juga telah kita singgung sebelumnya, adalah bahwa setiap reaksi pembakaran hidrokarbon pasti akan diikuti oleh adanya pembentukan karbon dioksida dan air. Sedangkan panas yang dihasilkan pada proses pembakaran tersebut ada sebagian kecil yang diserap oleh air sehingga ia berubah fase menjadi uap, dan sejumlah energi tersimpan sebagai panas laten. Nah, pada sebagian proses pembakaran yang terjadi ada kemungkinan dimana uap air tersebut terkondensasi sehingga energi panas laten di dalam uap air tersebut terlepas kembali ke sistem pembakaran. Heating value yang memperhitungkan terlepasnya kembali panas laten uap air tersebut, biasa kita kenal sebagai Higher Heating Value. Sedangkan Lower Heating Value tidak memasukkan energi panas laten yang dilepaskan oleh terkondensasinya uap air tersebut ke dalam nilai heating value. Dengan kata lain, HHV mengasumsikan bahwa uap air hasil proses pembakaran akan terkondensasi dan melepaskan panas latennya di akhir proses, sedangkan LHV mengasumsikan bahwa uap air akan tetap sebagai uap air hingga akhir proses pembakaran.

Sesuai pembahasan di atas maka nilai HHV dan LHV akan memiliki selisih nilai. Selisih tersebut bergantung pada komposisi kimia dari bahan bakar. Pada karbon ataupun karbon monoksida murni nilai HHV dan LHV memiliki nilai yang hampir sama persis. Hal ini disebabkan karena karbon dan karbon monoksida murni tidak mengandung atom hidrogen pada molekulnya, sehingga -secara teoritis- tidak akan terbentuk molekul air di akhir proses pembakaran. Sebaliknya pada bahan bakar hidrogen, yang pasti akan terbentuk molekul air di akhir proses pembakarannya, nilai HHV hidrogen lebih besar 18,2% dari nilai LHV-nya. Nilai HHV tersebut termasuk juga mengukur panas sensibel uap air pada temperatur 150°C hingga 100°C, panas laten air pada temperatur 100°C, serta panas sensibel air dari temperatur 100°C hingga 25°C.

Nilai Heating Value Berbagai Jenis Bahan Bakar

Berikut adalah nilai heating value dari berbagai jenis bahan bakar dikutip dari beberapa sumber.

Jenis Bahan Bakar HHV (MJ/kg) LHV (MJ/kg)
Hidrogen 141,8 119,96
Metana 55,5 50
Etana 51,9 47,8
Propana 50,35 46,35
Butana 49,5 45,75
Pentana 48,6 45,35
Minyak Bumi 45,543 42,686
Lilin Parafin 46 41,5
Kerosin 46,2 43
Solar 44,8 43,4
Bensin 47 43,448
Batubara Anthracite 32,5
Batubara Lignite 15
Gas Alam 54
Kayu (biasa) 21,7
Kayu Bakar 24,2 17
Gambut basah 6
Gambut kering 15
Karbon (Grafit) 32,808
Karbon monoksida 10,112
Amonia 18,646
Sulfur padat 9,163

Referensi: